Recent research in language modeling reveals two scaling effects: the well-known improvement from increased training compute, and a lesser-known boost from applying more sophisticated or computationally intensive inference methods. Inspired by recent findings on the fractal geometry of language, we introduce Recursive INference Scaling (RINS) as a complementary, plug-in recipe for scaling inference time. For a given fixed model architecture and training compute budget, RINS substantially improves language modeling performance. It also generalizes beyond pure language tasks, delivering gains in multimodal systems, including a +2% improvement in 0-shot ImageNet accuracy for SigLIP-B/16. Additionally, by deriving data scaling laws, we show that RINS improves both the asymptotic performance limits and the scaling exponents. These advantages are maintained even when compared to state-of-the-art recursive techniques like the "repeat-all-over" (RAO) strategy in Mobile LLM. Finally, stochastic RINS not only can enhance performance further but also provides the flexibility to optionally forgo increased inference computation at test time with minimal performance degradation.