We propose Group Shapley, a metric that extends the classical individual-level Shapley value framework to evaluate the importance of feature groups, addressing the structured nature of predictors commonly found in business and economic data. More importantly, we develop a significance testing procedure based on a three-cumulant chi-square approximation and establish the asymptotic properties of the test statistics for Group Shapley values. Our approach can effectively handle challenging scenarios, including sparse or skewed distributions and small sample sizes, outperforming alternative tests such as the Wald test. Simulations confirm that the proposed test maintains robust empirical size and demonstrates enhanced power under diverse conditions. To illustrate the method's practical relevance in advancing Explainable AI, we apply our framework to bond recovery rate predictions using a global dataset (1996-2023) comprising 2,094 observations and 98 features, grouped into 16 subgroups and five broader categories: bond characteristics, firm fundamentals, industry-specific factors, market-related variables, and macroeconomic indicators. Our results identify the market-related variables group as the most influential. Furthermore, Lorenz curves and Gini indices reveal that Group Shapley assigns feature importance more equitably compared to individual Shapley values.