Outcome estimation of treatments for target individuals is an important foundation for decision making based on causal relations. Most existing outcome estimation methods deal with binary or multiple-choice treatments; however, in some applications, the number of treatments can be significantly large, while the treatments themselves have rich information. In this study, we considered one important instance of such cases: the outcome estimation problem of graph-structured treatments such as drugs. Owing to the large number of possible treatments, the counterfactual nature of observational data that appears in conventional treatment effect estimation becomes more of a concern for this problem. Our proposed method, GraphITE (pronounced "graphite") learns the representations of graph-structured treatments using graph neural networks while mitigating observation biases using Hilbert-Schmidt Independence Criterion regularization, which increases the independence of the representations of the targets and treatments. Experiments on two real-world datasets show that GraphITE outperforms baselines, especially in cases with a large number of treatments.