We introduce a method for embedding graphs as vectors in a structure-preserving manner. In this paper, we showcase its rich representational capacity and give some theoretical properties of our method. In particular, our procedure falls under the bind-and-sum approach, and we show that our binding operation -- the tensor product -- is the most general binding operation that respects the principle of superposition. Similarly, we show that the spherical code achieves optimal compression. We then establish some precise results characterizing the performance our method as well as some experimental results showcasing how it can accurately perform various graph operations even when the number of edges is quite large. Finally, we conclude with establishing a link to adjacency matrices, showing that our method is, in some sense, a generalization of adjacency matrices with applications towards large sparse graphs.