We introduce a graph-aware autoencoder ensemble framework, with associated formalisms and tooling, designed to facilitate deep learning for scholarship in the humanities. By composing sub-architectures to produce a model isomorphic to a humanistic domain we maintain interpretability while providing function signatures for each sub-architectural choice, allowing both traditional and computational researchers to collaborate without disrupting established practices. We illustrate a practical application of our approach to a historical study of the American post-Atlantic slave trade, and make several specific technical contributions: a novel hybrid graph-convolutional autoencoder mechanism, batching policies for common graph topologies, and masking techniques for particular use-cases. The effectiveness of the framework for broadening participation of diverse domains is demonstrated by a growing suite of two dozen studies, both collaborations with humanists and established tasks from machine learning literature, spanning a variety of fields and data modalities. We make performance comparisons of several different architectural choices and conclude with an ambitious list of imminent next steps for this research.