In this paper we address the problem of change detection in multi-spectral images by proposing a data-driven framework of graph-based data fusion. The main steps of the proposed approach are: (i) The generation of a multi-temporal pixel based graph, by the fusion of intra-graphs of each temporal data; (ii) the use of Nystr\"om extension to obtain the eigenvalues and eigenvectors of the fused graph, and the selection of the final change map. We validated our approach in two real cases of remote sensing according to both qualitative and quantitative analyses. The results confirm the potential of the proposed graph-based change detection algorithm outperforming state-of-the-art methods.