The Uniform Information Density principle posits that humans prefer to spread information evenly during language production. In this work, we examine if the UID principle can help capture differences between Large Language Models (LLMs) and human-generated text. We propose GPT-who, the first psycholinguistically-aware multi-class domain-agnostic statistical-based detector. This detector employs UID-based features to model the unique statistical signature of each LLM and human author for accurate authorship attribution. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical-based) such as GLTR, GPTZero, OpenAI detector, and ZeroGPT by over $20$% across domains. In addition to superior performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We present the largest analysis of the UID-based representations of human and machine-generated texts (over 400k articles) to demonstrate how authors distribute information differently, and in ways that enable their detection using an off-the-shelf LM without any fine-tuning. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.