We propose a novel method that solves global optimization problems in two steps: (1) perform a (exponential) power-$N$ transformation to the not-necessarily differentiable objective function $f$ to obtain $f_N$, and (2) optimize the Gaussian-smoothed $f_N$ with stochastic approximations. Under mild conditions on $f$, for any $\delta>0$, we prove that with a sufficiently large power $N_\delta$, this method converges to a solution in the $\delta$-neighborhood of $f$'s global maximum point. The convergence rate is $O(d^2\sigma^4\varepsilon^{-2})$, which is faster than both the standard and single-loop homotopy methods. Extensive experiments show that our method requires significantly fewer iterations than other compared algorithms to produce a high-quality solution.