We review the cumulant decomposition (a way of decomposing the expectation of a product of random variables (e.g. $\mathbb{E}[XYZ]$) into a sum of terms corresponding to partitions of these variables.) and the Wick decomposition (a way of decomposing a product of (not necessarily random) variables into a sum of terms corresponding to subsets of the variables). Then we generalize each one to a new decomposition where the product function is generalized to an arbitrary function.