Industrial vision anomaly detection plays a critical role in the advanced intelligent manufacturing process, while some limitations still need to be addressed under such a context. First, existing reconstruction-based methods struggle with the identity mapping of trivial shortcuts where the reconstruction error gap is legible between the normal and abnormal samples, leading to inferior detection capabilities. Then, the previous studies mainly concentrated on the convolutional neural network (CNN) models that capture the local semantics of objects and neglect the global context, also resulting in inferior performance. Moreover, existing studies follow the individual learning fashion where the detection models are only capable of one category of the product while the generalizable detection for multiple categories has not been explored. To tackle the above limitations, we proposed a self-induction vision Transformer(SIVT) for unsupervised generalizable multi-category industrial visual anomaly detection and localization. The proposed SIVT first extracts discriminatory features from pre-trained CNN as property descriptors. Then, the self-induction vision Transformer is proposed to reconstruct the extracted features in a self-supervisory fashion, where the auxiliary induction tokens are additionally introduced to induct the semantics of the original signal. Finally, the abnormal properties can be detected using the semantic feature residual difference. We experimented with the SIVT on existing Mvtec AD benchmarks, the results reveal that the proposed method can advance state-of-the-art detection performance with an improvement of 2.8-6.3 in AUROC, and 3.3-7.6 in AP.