In this paper, we provide an analytical framework for full-duplex (FD) massive multiple-input multiple-output (MIMO) cellular networks with low resolution analog-to-digital and digital-to-analog converters (ADCs and DACs). Matched filters are employed at the FD base stations (BSs) at the transmit and receive sides. For both reverse and forward links, we derive the expressions of the signal-to-quantization-plus-interference-and-noise ratio (SQINR) for general and special cases. We further evaluate the outage probability and spectral efficiency for reverse and forward links, and quantify the effects of the quantization error, loopback self-interference and inter-user interference for cells arranged in a hexagonal lattice and Poisson Point Process (PPP) tessellations. Finally, we derive analytical expressions for spectral efficiency for asymptotic cases as well as for power scaling laws.