Model merging has achieved significant success, with numerous innovative methods proposed to enhance capabilities by combining multiple models. However, challenges persist due to the lack of a unified framework for classification and systematic comparative analysis, leading to inconsistencies in terminologies and categorizations. Meanwhile, as an increasing number of fine-tuned models are publicly available, their original training data often remain inaccessible due to privacy concerns or intellectual property restrictions. This makes traditional multi-task learning based on shared training data impractical. In scenarios where direct access to training data is infeasible, merging model parameters to create a unified model with broad generalization across multiple domains becomes crucial, further underscoring the importance of model merging techniques. Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking. This paper addresses these gaps by establishing a new taxonomy of model merging methods, systematically comparing different approaches, and providing an overview of key developments. By offering a structured perspective on this evolving area, we aim to help newcomers quickly grasp the field's landscape and inspire further innovations.