In the context of task-oriented communications we advocate the development of waveforms for Federated Edge Learning (FEEL). Over-the-air computing (AirComp) has emerged as a communication scheme that allows to compute a function out of distributed data and can be applied to FEEL. However, the design of modulations for AirComp is still in its infancy and most of the literature ignores this topic. In this work we employ frequency modulation (FM) and type based multiple access (TMBA) for FEEL and demonstrate its advantages with respect to the state of the art in terms of convergence and peak-to-average power ratio (PAPR).