Social media is increasingly plagued by realistic fake images, making it hard to trust content. Previous algorithms to detect these fakes often fail in new, real-world scenarios because they are trained on specific datasets. To address the problem, we introduce ForgeryTTT, the first method leveraging test-time training (TTT) to identify manipulated regions in images. The proposed approach fine-tunes the model for each individual test sample, improving its performance. ForgeryTTT first employs vision transformers as a shared image encoder to learn both classification and localization tasks simultaneously during the training-time training using a large synthetic dataset. Precisely, the localization head predicts a mask to highlight manipulated areas. Given such a mask, the input tokens can be divided into manipulated and genuine groups, which are then fed into the classification head to distinguish between manipulated and genuine parts. During test-time training, the predicted mask from the localization head is used for the classification head to update the image encoder for better adaptation. Additionally, using the classical dropout strategy in each token group significantly improves performance and efficiency. We test ForgeryTTT on five standard benchmarks. Despite its simplicity, ForgeryTTT achieves a 20.1% improvement in localization accuracy compared to other zero-shot methods and a 4.3% improvement over non-zero-shot techniques. Our code and data will be released upon publication.