This paper investigates the finite-time adaptive fuzzy tracking control problem for a class of pure-feedback system with full-state constraints. With the help of Mean-Value Theorem, the pure-feedback nonlinear system is transformed into strict-feedback case. By employing finite-time-stable like function and state transformation for output tracking error, the output tracking error converges to a predefined set in a fixed finite interval. To tackle the problem of state constraints, integral Barrier Lyapunov functions are utilized to guarantee that the state variables remain within the prescribed constraints with feasibility check. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions. In addition, all the signals in the closed-loop system are guaranteed to be semi-global ultimately uniformly bounded. Finally, two simulation examples are given to show the effectiveness of the proposed control strategy.