Algorithmic fairness in machine learning has recently garnered significant attention. However, two pressing challenges remain: (1) The fairness guarantees of existing fair classification methods often rely on specific data distribution assumptions and large sample sizes, which can lead to fairness violations when the sample size is moderate-a common situation in practice. (2) Due to legal and societal considerations, using sensitive group attributes during decision-making (referred to as the group-blind setting) may not always be feasible. In this work, we quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints. Specifically, we propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk. This framework is applicable to various group fairness notions in both group-aware and group-blind scenarios. Furthermore, we establish a minimax lower bound on the excess risk, showing the minimax optimality of our proposed algorithm up to logarithmic factors. Through extensive simulation studies and real data analysis, we further demonstrate the superior performance of our algorithm compared to existing methods, and provide empirical support for our theoretical findings.