Multi-view subspace clustering has conventionally focused on integrating heterogeneous feature descriptions to capture higher-dimensional information. One popular strategy is to generate a common subspace from different views and then apply graph-based approaches to deal with clustering. However, the performance of these methods is still subject to two limitations, namely the multiple views fusion pattern and the connection between the fusion process and clustering tasks. To address these problems, we propose a novel multi-view subspace clustering framework via fine-grained graph learning, which can tell the consistency of local structures between different views and integrate all views more delicately than previous weight regularizations. Different from other models in the literature, the point-level graph regularization and the reformulation of spectral clustering are introduced to perform graphs fusion and learn the shared cluster structure together. Extensive experiments on five real-world datasets show that the proposed framework has comparable performance to the SOTA algorithms.