Federated learning (FL) has recently become a hot research topic, in which Byzantine robustness, communication efficiency and privacy preservation are three important aspects. However, the tension among these three aspects makes it hard to simultaneously take all of them into account. In view of this challenge, we theoretically analyze the conditions that a communication compression method should satisfy to be compatible with existing Byzantine-robust methods and privacy-preserving methods. Motivated by the analysis results, we propose a novel communication compression method called consensus sparsification (ConSpar). To the best of our knowledge, ConSpar is the first communication compression method that is designed to be compatible with both Byzantine-robust methods and privacy-preserving methods. Based on ConSpar, we further propose a novel FL framework called FedREP, which is Byzantine-robust, communication-efficient and privacy-preserving. We theoretically prove the Byzantine robustness and the convergence of FedREP. Empirical results show that FedREP can significantly outperform communication-efficient privacy-preserving baselines. Furthermore, compared with Byzantine-robust communication-efficient baselines, FedREP can achieve comparable accuracy with the extra advantage of privacy preservation.