In the healthcare sector, a consciousness surrounding data privacy and corresponding data protection regulations, as well as heterogeneous and non-harmonized data, pose huge challenges to large-scale data analysis. Moreover, clinical data often involves partially overlapping features, as some observations may be missing due to various reasons, such as differences in procedures, diagnostic tests, or other recorded patient history information across hospitals or institutes. To address the challenges posed by partially overlapping features and incomplete data in clinical datasets, a comprehensive approach is required. Particularly in the domain of medical data, promising outcomes are achieved by federated random forests whenever features align. However, for most standard algorithms, like random forest, it is essential that all data sets have identical parameters. Therefore, in this work the concept of federated random forest is adapted to a setting with partially overlapping features. Moreover, our research assesses the effectiveness of the newly developed federated random forest models for partially overlapping clinical data. For aggregating the federated, globally optimized model, only features available locally at each site can be used. We tackled two issues in federation: (i) the quantity of involved parties, (ii) the varying overlap of features. This evaluation was conducted across three clinical datasets. The federated random forest model even in cases where only a subset of features overlaps consistently demonstrates superior performance compared to its local counterpart. This holds true across various scenarios, including datasets with imbalanced classes. Consequently, federated random forests for partially overlapped data offer a promising solution to transcend barriers in collaborative research and corporate cooperation.