FastCAR is a novel task consolidation approach in Multi-Task Learning (MTL) for a classification and a regression task, despite task heterogeneity with only subtle correlation. It addresses object classification and continuous property variable regression, a crucial use case in science and engineering. FastCAR involves a labeling transformation approach that can be used with a single-task regression network architecture. FastCAR outperforms traditional MTL model families, parametrized in the landscape of architecture and loss weighting schemes, when learning of both tasks are collectively considered (classification accuracy of 99.54%, regression mean absolute percentage error of 2.3%). The experiments performed used an Advanced Steel Property dataset contributed by us. The dataset comprises 4536 images of 224x224 pixels, annotated with object classes and hardness properties that take continuous values. With the labeling transformation and single-task regression network architecture, FastCAR achieves reduced latency and time efficiency.