We investigate a biologically motivated approach to fast visual classification, directly inspired by the recent work of Serre et al. Specifically, trading-off biological accuracy for computational efficiency, we explore using wavelet and grouplet-like transforms to parallel the tuning of visual cortex V1 and V2 cells, alternated with max operations to achieve scale and translation invariance. A feature selection procedure is applied during learning to accelerate recognition. We introduce a simple attention-like feedback mechanism, significantly improving recognition and robustness in multiple-object scenes. In experiments, the proposed algorithm achieves or exceeds state-of-the-art success rate on object recognition, texture and satellite image classification, language identification and sound classification.