In this paper, we propose FairShap, a novel and interpretable pre-processing (re-weighting) method for fair algorithmic decision-making through data valuation. FairShap is based on the Shapley Value, a well-known mathematical framework from game theory to achieve a fair allocation of resources. Our approach is easily interpretable, as it measures the contribution of each training data point to a predefined fairness metric. We empirically validate FairShap on several state-of-the-art datasets of different nature, with different training scenarios and models. The proposed approach outperforms other methods, yielding significantly fairer models with similar levels of accuracy. In addition, we illustrate FairShap's interpretability by means of histograms and latent space visualizations. We believe this work represents a promising direction in interpretable, model-agnostic approaches to algorithmic fairness.