A substantial portion of the literature on fairness in algorithms proposes, analyzes, and operationalizes simple formulaic criteria for assessing fairness. Two of these criteria, Equalized Odds and Calibration by Group, have gained significant attention for their simplicity and intuitive appeal, but also for their incompatibility. This chapter provides a perspective on the meaning and consequences of these and other fairness criteria using graphical models which reveals Equalized Odds and related criteria to be ultimately misleading. An assessment of various graphical models suggests that fairness criteria should ultimately be case-specific and sensitive to the nature of the information the algorithm processes.