Facial wrinkle detection plays a crucial role in cosmetic dermatology. Precise manual segmentation of facial wrinkles is challenging and time-consuming, with inherent subjectivity leading to inconsistent results among graders. To address this issue, we propose two solutions. First, we build and release the first public facial wrinkle dataset, `FFHQ-Wrinkle', an extension of the NVIDIA FFHQ dataset. This dataset includes 1,000 images with human labels and 50,000 images with automatically generated weak labels. This dataset can foster the research community to develop advanced wrinkle detection algorithms. Second, we introduce a training strategy for U-Net-like encoder-decoder models to detect wrinkles across the face automatically. Our method employs a two-stage training strategy: texture map pretraining and finetuning on human-labeled data. Initially, we pretrain models on a large dataset with weak labels (N=50k) or masked texture maps generated through computer vision techniques, without human intervention. Subsequently, we finetune the models using human-labeled data (N=1k), which consists of manually labeled wrinkle masks. During finetuning, the network inputs a combination of RGB and masked texture maps, comprising four channels. We effectively combine labels from multiple annotators to minimize subjectivity in manual labeling. Our strategies demonstrate improved segmentation performance in facial wrinkle segmentation both quantitatively and visually compared to existing pretraining methods.