Neural networks have been able to generate high-quality single-sentence speech with substantial expressiveness. However, it remains a challenge concerning paragraph-level speech synthesis due to the need for coherent acoustic features while delivering fluctuating speech styles. Meanwhile, training these models directly on over-length speech leads to a deterioration in the quality of synthesis speech. To address these problems, we propose a high-quality and expressive paragraph speech synthesis system with a multi-step variational autoencoder. Specifically, we employ multi-step latent variables to capture speech information at different grammatical levels before utilizing these features in parallel to generate speech waveform. We also propose a three-step training method to improve the decoupling ability. Our model was trained on a single-speaker French audiobook corpus released at Blizzard Challenge 2023. Experimental results underscore the significant superiority of our system over baseline models.