Recommendation systems are an integral part of Artificial Intelligence (AI) and have become increasingly important in the growing age of commercialization in AI. Deep learning (DL) techniques for recommendation systems (RS) provide powerful latent-feature models for effective recommendation but suffer from the major drawback of being non-interpretable. In this paper we describe a framework for explainable temporal recommendations in a DL model. We consider an LSTM based Recurrent Neural Network (RNN) architecture for recommendation and a neighbourhood-based scheme for generating explanations in the model. We demonstrate the effectiveness of our approach through experiments on the Netflix dataset by jointly optimizing for both prediction accuracy and explainability.