The scientific method is the cornerstone of human progress across all branches of the natural and applied sciences, from understanding the human body to explaining how the universe works. The scientific method is based on identifying systematic rules or principles that describe the phenomenon of interest in a reproducible way that can be validated through experimental evidence. In the era of artificial intelligence (AI), there are discussions on how AI systems may discover new knowledge. We argue that, before the advent of artificial general intelligence, human complex reasoning for scientific discovery remains of vital importance. Yet, AI can be leveraged for scientific discovery via explainable AI. More specifically, knowing what data AI systems used to make decisions can be a point of contact with domain experts and scientists, that can lead to divergent or convergent views on a given scientific problem. Divergent views may spark further scientific investigations leading to new scientific knowledge. Convergent views may instead reassure that the AI system is operating within bounds deemed reasonable to humans. The latter point addresses the trustworthiness requirement that is indispensable for critical applications in the applied sciences, such as medicine.