It is common in machine learning to estimate a response y given covariate information x. However, these predictions alone do not quantify any uncertainty associated with said predictions. One way to overcome this deficiency is with conformal inference methods, which construct a set containing the unobserved response y with a prescribed probability. Unfortunately, even with one-dimensional responses, conformal inference is computationally expensive despite recent encouraging advances. In this paper, we explore the multidimensional response case within a regression setting, delivering exact derivations of conformal inference p-values when the predictive model can be described as a linear function of y. Additionally, we propose different efficient ways of approximating the conformal prediction region for non-linear predictors while preserving computational advantages. We also provide empirical justification for these approaches using a real-world data example.