This research focuses on soft robotic bladders that are used to monitor and control the interaction between a user's head and the shell of a Smart Helmet. Compression of these bladders determines impact dissipation; hence the focus of this paper is sensing and estimation of bladder compression. An IR rangefinder-based solution is evaluated using regression techniques as well as a Neural Network to estimate bladder compression. A Hall-Effect (HE) magnetic sensing system is also examined where HE sensors embedded in the base of the bladder sense the position of a magnet in the top of the bladder. The paper presents the HE sensor array, signal processing of HE voltage data, and then a Neural Network (NN) for predicting bladder compression. Efficacy of different training data sets on NN performance is studied. Different NN configurations are examined to determine a configuration that provides accurate estimates with as few nodes as possible. Different bladder compression profiles are evaluated to characterize IR range finding and HE based techniques in application scenarios.