Suppose we observe a trajectory of length $n$ from an $\alpha$-mixing stochastic process over a finite but potentially large state space. We consider the problem of estimating the probability mass placed by the stationary distribution of any such process on elements that occur with a certain frequency in the observed sequence. We estimate this vector of probabilities in total variation distance, showing universal consistency in $n$ and recovering known results for i.i.d. sequences as special cases. Our proposed methodology carefully combines the plug-in (or empirical) estimator with a recently-proposed modification of the Good--Turing estimator called \textsc{WingIt}, which was originally developed for Markovian sequences. En route to controlling the error of our estimator, we develop new performance bounds on \textsc{WingIt} and the plug-in estimator for $\alpha$-mixing stochastic processes. Importantly, the extensively used method of Poissonization can no longer be applied in our non i.i.d. setting, and so we develop complementary tools -- including concentration inequalities for a natural self-normalized statistic of mixing sequences -- that may prove independently useful in the design and analysis of estimators for related problems.