Recent studies have shown that Convolutional Neural Networks (CNNs) achieve impressive results in crop segmentation of Satellite Image Time Series (SITS). However, the emergence of transformer networks in various vision tasks raises the question of whether they can outperform CNNs in this task as well. This paper presents a revised version of the Transformer-based Swin UNETR model, specifically adapted for crop segmentation of SITS. The proposed model demonstrates significant advancements, achieving a validation accuracy of 96.14% and a test accuracy of 95.26% on the Munich dataset, surpassing the previous best results of 93.55% for validation and 92.94% for the test. Additionally, the model's performance on the Lombardia dataset is comparable to UNet3D and superior to FPN and DeepLabV3. Experiments of this study indicate that the model will likely achieve comparable or superior accuracy to CNNs while requiring significantly less training time. These findings highlight the potential of transformer-based architectures for crop segmentation in SITS, opening new avenues for remote sensing applications.