Non-terrestrial networks (NTNs) complement their terrestrial counterparts in enabling ubiquitous connectivity globally by serving unserved and/or underserved areas of the world. While supporting enhanced mobile broadband (eMBB) data over NTNs has been extensively studied in the past, focus on massive machine type communication (mMTC) over NTNs is currently growing, as also witnessed by the new study and work items included into the 3rd generation partnership project (3GPP) agenda for commissioning specifications for Internet-of-Things (IoT) communications over NTNs. Supporting mMTC in non-terrestrial cellular IoT (C-IoT) networks requires jointly addressing the unique challenges introduced in NTNs and CIoT communications. In this paper, we tackle one such issue caused due to the extended round-trip time and increased path loss in NTNs resulting in a degraded network throughput. We propose smarter transport blocks scheduling methods that can increase the efficiency of resource utilization. We conduct end-to-end link-level simulations of C-IoT traffic over NTNs and present numerical results of the data rate gains achieved to show the performance of our proposed solutions against legacy scheduling methods.