Massive multiple-input multiple-output (MIMO) is a key technique for fifth-generation (5G) and beyond communications. Therefore, accurate characterization of the responses of the large-scale antenna arrays at an arbitrary direction is critical. The effective aperture distribution function (EADF) can provide an analytic description of an antenna array based on a full-sphere measurement of the array in an anechoic chamber. However, as the aperture of an array becomes significantly larger, application of the EADF requires very dense spatial samples due to the large distance-offsets of the array elements to the reference point in the anechoic chamber. This leads to a prohibitive measurement time and a high computational complexity of EADF. In this paper, we first present the EADF applied to large-scale arrays, followed by an analytical analysis of the issue caused by the large array aperture. To solve this issue, an enhanced low-complexity EADF is proposed with a low complexity that is only considering the intrinsic characteristics of each array element rather than the aperture size of the array. Moreover, a measurement campaign conducted at the frequency band of 27-30\,GHz using a relatively large planar array is introduced, where the proposed enhanced EADF is applied and validated.