The inherent ill-posed nature of image reconstruction problems, due to limitations in the physical acquisition process, is typically addressed by introducing a regularisation term that incorporates prior knowledge about the underlying image. The iterative framework of Plug-and-Play methods, specifically designed for tackling such inverse problems, achieves state-of-the-art performance by replacing the regularisation with a generic denoiser, which may be parametrised by a neural network architecture. However, these deep learning approaches suffer from a critical limitation: the absence of a control parameter to modulate the regularisation strength, which complicates the design of a convergent regularisation. To address this issue, this work introduces a novel scaling method that explicitly integrates and adjusts the strength of regularisation. The scaling parameter enhances interpretability by reflecting the quality of the denoiser's learning process, and also systematically improves its optimisation. Furthermore, the proposed approach ensures that the resulting family of regularisations is provably stable and convergent.