Controlling spacecraft near asteroids in deep space comes with many challenges. The delays involved necessitate heavy usage of limited onboard computation resources while fuel efficiency remains a priority to support the long loiter times needed for gathering data. Additionally, the difficulty of state determination due to the lack of traditional reference systems requires a guidance, navigation, and control (GNC) pipeline that ideally is both computationally and fuel-efficient, and that incorporates a robust state determination system. In this paper, we propose an end-to-end algorithm utilizing neural networks to generate near-optimal control commands from raw sensor data, as well as a hybrid model predictive control (MPC) guided imitation learning controller delivering improvements in computational efficiency over a traditional MPC controller.