Small adversarial perturbations of input data are able to drastically change performance of machine learning systems, thereby challenging the validity of such systems. We present the very first end-to-end adversarial attacks on a music instrument classification system allowing to add perturbations directly to audio waveforms instead of spectrograms. Our attacks are able to reduce the accuracy close to a random baseline while at the same time keeping perturbations almost imperceptible and producing misclassifications to any desired instrument.