Pre-trained language models (PLMs) have proven to be effective for document re-ranking task. However, they lack the ability to fully interpret the semantics of biomedical and health-care queries and often rely on simplistic patterns for retrieving documents. To address this challenge, we propose an approach that integrates knowledge and the PLMs to guide the model toward effectively capturing information from external sources and retrieving the correct documents. We performed comprehensive experiments on two biomedical and open-domain datasets that show that our approach significantly improves vanilla PLMs and other existing approaches for document re-ranking task.