Mode division multiplexing (MDM) in optical fibers enables multichannel capabilities for various applications, including data transmission, quantum networks, imaging, and sensing. However, MDM optical fiber systems, usually necessities bulk-optics approaches for launching different orthogonal fiber modes into the multimode optical fiber, and multiple-input multiple-output digital electronic signal processing at the receiver side to undo the arbitrary mode scrambling in a circular-core optical fiber. Here we show that a high-dimensional optical fiber communication system can be entirely implemented by a reconfigurable integrated photonic processor, featuring kernels of multichannel mode multiplexing transmitter and all-optical descrambling receiver. High-speed and inter-chip communications involving six spatial- and polarization modes have been experimentally demonstrated with high efficiency and high-quality eye diagrams, despite the presence of random mode scrambling and polarization rotation in a circular-core few-mode fiber. The proposed photonic integration approach holds promising prospects for future space-division multiplexing applications.