The rollout of the fifth-generation (5G) networks has raised some concerns about potential health effects from increased exposure to electromagnetic fields (EMF). To address these concerns, we design a novel EMF-aware architecture for uplink communications. Specifically, we propose an aerial reconfigurable intelligent surface (ARIS) assisted multi-user multiple-input multiple-output (MIMO) system, where the ARIS features a reconfigurable intelligent surface (RIS) panel mounted on an unmanned aerial vehicle (UAV), offering a flexible and adaptive solution for reducing uplink EMF exposure. We formulate and solve a new problem to minimize the EMF exposure by optimizing the system parameters, such as transmit beamforming, resource allocation, transmit power, ARIS phase shifts, and ARIS trajectory. Our numerical results demonstrate the effectiveness of EMF-aware transmission scheme over the benchmark methods, achieving EMF reductions of over 30% and 90% compared to the fixed ARIS and non-ARIS schemes, respectively.