A wide variety of nonmonotonic semantics can be expressed as approximators defined under AFT (Approximation Fixpoint Theory). Using traditional AFT theory, it is not possible to define approximators that rely on information computed in previous iterations of stable revision. However, this information is rich for semantics that incorporate classical negation into nonmonotonic reasoning. In this work, we introduce a methodology resembling AFT that can utilize priorly computed upper bounds to more precisely capture semantics. We demonstrate our framework's applicability to hybrid MKNF (minimal knowledge and negation as failure) knowledge bases by extending the state-of-the-art approximator.