This paper deals with the state estimation of stochastic models with continuous dynamics. The aim is to incorporate spectral differentiation methods into the solution to the Fokker-Planck equation in grid-based state estimation routine, while taking into account the specifics of the field, such as probability density function (PDF) features, moving grid, zero boundary conditions, etc. The spectral methods, in general, achieve very fast convergence rate of O(c^N )(O < c < 1) for analytical functions such as the probability density function, where N is the number of grid points. This is significantly better than the standard finite difference method (or midpoint rule used in discrete estimation) typically used in grid-based filter design with convergence rate O( 1 / N^2 ). As consequence, the proposed spectral method based filter provides better state estimation accuracy with lower number of grid points, and thus, with lower computational complexity.