A Generative Adversarial Network (GAN) is a deep-learning generative model in the field of Machine Learning (ML) that involves training two Neural Networks (NN) using a sizable data set. In certain fields, such as medicine, the training data may be hospital patient records that are stored across different hospitals. The classic centralized approach would involve sending the data to a centralized server where the model would be trained. However, that would involve breaching the privacy and confidentiality of the patients and their data, which would be unacceptable. Therefore, Federated Learning (FL), an ML technique that trains ML models in a distributed setting without data ever leaving the host device, would be a better alternative to the centralized option. In this ML technique, only parameters and certain metadata would be communicated. In spite of that, there still exist attacks that can infer user data using the parameters and metadata. A fully privacy-preserving solution involves homomorphically encrypting (HE) the data communicated. This paper will focus on the performance loss of training an FL-GAN with three different types of Homomorphic Encryption: Partial Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), and Fully Homomorphic Encryption (FHE). We will also test the performance loss of Multi-Party Computations (MPC), as it has homomorphic properties. The performances will be compared to the performance of training an FL-GAN without encryption as well. Our experiments show that the more complex the encryption method is, the longer it takes, with the extra time taken for HE is quite significant in comparison to the base case of FL.