Double staining in histopathology, particularly for metaplastic breast cancer, typically employs H&E and P63 dyes. However, P63's tissue damage and high cost necessitate alternative methods. This study introduces xAI-CycleGAN, an advanced architecture combining Mask CycleGAN with explainability features and structure-preserving capabilities for transforming H&E stained breast tissue images into P63-like images. The architecture allows for output editing, enhancing resemblance to actual images and enabling further model refinement. We showcase xAI-CycleGAN's efficacy in maintaining structural integrity and generating high-quality images. Additionally, a histopathologist survey indicates the generated images' realism is often comparable to actual images, validating our model's high-quality output.