Sequential recommendation aims to estimate dynamic user preferences and sequential dependencies among historical user behaviors. Attention-based models have proven effective for sequential recommendation, but they suffer from inference inefficiency due to the quadratic computational complexity of attention mechanisms, particularly for long-range behavior sequences. Inspired by the recent success of state space models (SSMs) in control theory, which provide a robust framework for modeling and controlling dynamic systems, we present EchoMamba4Rec. Control theory emphasizes the use of SSMs for managing long-range dependencies and maintaining inferential efficiency through structured state matrices. EchoMamba4Rec leverages these control relationships in sequential recommendation and integrates bi-directional processing with frequency-domain filtering to capture complex patterns and dependencies in user interaction data more effectively. Our model benefits from the ability of state space models (SSMs) to learn and perform parallel computations, significantly enhancing computational efficiency and scalability. It features a bi-directional Mamba module that incorporates both forward and reverse Mamba components, leveraging information from both past and future interactions. Additionally, a filter layer operates in the frequency domain using learnable Fast Fourier Transform (FFT) and learnable filters, followed by an inverse FFT to refine item embeddings and reduce noise. We also integrate Gate Linear Units (GLU) to dynamically control information flow, enhancing the model's expressiveness and training stability. Experimental results demonstrate that EchoMamba significantly outperforms existing models, providing more accurate and personalized recommendations.