This paper presents new dynamic topology adaptation strategies for distributed estimation in smart grids systems. We propose a dynamic exhaustive search--based topology adaptation algorithm and a dynamic sparsity--inspired topology adaptation algorithm, which can exploit the topology of smart grids with poor--quality links and obtain performance gains. We incorporate an optimized combining rule, named Hastings rule into our proposed dynamic topology adaptation algorithms. Compared with the existing works in the literature on distributed estimation, the proposed algorithms have a better convergence rate and significantly improve the system performance. The performance of the proposed algorithms is compared with that of existing algorithms in the IEEE 14--bus system.