This paper introduces Dynamic Embeddings with Task-Oriented prompting (DETOT), a novel approach aimed at improving the adaptability and efficiency of machine learning models by implementing a flexible embedding layer. Unlike traditional static embeddings [14], DETOT dynamically adjusts embeddings based on task-specific requirements and performance feedback, optimizing input data representation for individual tasks [4]. This method enhances both accuracy and computational performance by tailoring the representation layer to meet the unique needs of each task. The structure of DETOT is detailed, highlighting its task-specific adaptation, continuous feedback loop, and mechanisms for preventing overfitting. Empirical evaluations demonstrate its superiority over existing methods.