The first step in drug discovery is finding drug molecule moieties with medicinal activity against specific targets. Therefore, it is crucial to investigate the interaction between drug-target proteins and small chemical molecules. However, traditional experimental methods for discovering potential small drug molecules are labor-intensive and time-consuming. There is currently a lot of interest in building computational models to screen small drug molecules using drug molecule-related databases. In this paper, we propose a method for predicting drug-target binding affinity using deep learning models. This method uses a modified GRU and GNN to extract features from the drug-target protein sequences and the drug molecule map, respectively, to obtain their feature vectors. The combined vectors are used as vector representations of drug-target molecule pairs and then fed into a fully connected network to predict drug-target binding affinity. This proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.