Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:The continuous evolution of small Unmanned Aerial Systems (sUAS) demands advanced testing methodologies to ensure their safe and reliable operations in the real-world. To push the boundaries of sUAS simulation testing in realistic environments, we previously developed the DroneReqValidator (DRV) platform, allowing developers to automatically conduct simulation testing in digital twin of earth. In this paper, we present DRV 2.0, which introduces a novel component called DroneWiS (Drone Wind Simulation). DroneWiS allows sUAS developers to automatically simulate realistic windy conditions and test the resilience of sUAS against wind. Unlike current state-of-the-art simulation tools such as Gazebo and AirSim that only simulate basic wind conditions, DroneWiS leverages Computational Fluid Dynamics (CFD) to compute the unique wind flows caused by the interaction of wind with the objects in the environment such as buildings and uneven terrains. This simulation capability provides deeper insights to developers about the navigation capability of sUAS in challenging and realistic windy conditions. DroneWiS equips sUAS developers with a powerful tool to test, debug, and improve the reliability and safety of sUAS in real-world. A working demonstration is available at https://youtu.be/khBHEBST8Wc