Recently, due to the popularity of deep neural networks and other methods whose training typically relies on the optimization of an objective function, and due to concerns for data privacy, there is a lot of interest in differentially private gradient descent methods. To achieve differential privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely the sensitivity of the information which the participants will observe. In this study, we present a novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging public information concerning the current global model and its location within the search domain, we can achieve improved gradient bounds, leading to enhanced sensitivity determinations and refined noise level adjustments. We extend the state of the art algorithms, present improved differential privacy guarantees requiring less noise and present an empirical evaluation.