We designed and developed DOOM (Adversarial-DRL based Opcode level Obfuscator to generate Metamorphic malware), a novel system that uses adversarial deep reinforcement learning to obfuscate malware at the op-code level for the enhancement of IDS. The ultimate goal of DOOM is not to give a potent weapon in the hands of cyber-attackers, but to create defensive-mechanisms against advanced zero-day attacks. Experimental results indicate that the obfuscated malware created by DOOM could effectively mimic multiple-simultaneous zero-day attacks. To the best of our knowledge, DOOM is the first system that could generate obfuscated malware detailed to individual op-code level. DOOM is also the first-ever system to use efficient continuous action control based deep reinforcement learning in the area of malware generation and defense. Experimental results indicate that over 67% of the metamorphic malware generated by DOOM could easily evade detection from even the most potent IDS. This achievement gains significance, as with this, even IDS augment with advanced routing sub-system can be easily evaded by the malware generated by DOOM.